Is Fake News a Machine Learning Problem?

On Friday, Donald J. Trump was sworn in as the 45th president of the United States. The inauguration followed a bruising primary and general election, in which social media played an unprecedented role. In particular, the proliferation of fake news emerged as a dominant storyline. Throughout the campaign, explicitly false stories circulated through the internet’s echo chambers. Some fake stories originated as rumors, others were created for profit and monetized with click-based advertisements, and according to US Director of National Intelligence James Clapper, many fake news were orchestrated by the Russian government with the intention of influencing the results.  While it is not possible to observe the counterfactual, many believe that the election’s outcome hinged on the influence of these stories.

For context, consider one illustrative case as described by the New York Times. On November 9th, 35-year old marketer Erik Tucker tweeted a picture of several buses, claiming that they were transporting paid protesters to demonstrate against Trump. The post quickly went viral, receiving over 16,000 shares on Twitter and 350,000 shares on Facebook. Trump and his surrogates joined in, promoting the story through social media. Tucker’s claim turned out to be a fabrication. Nevertheless, it likely reached millions of people, more than many conventional news stories.

A number of critics cast blame on technology companies like Facebook, Twitter, and Google, suggesting that they have a responsibility to address the fake news epidemic because their algorithms influence who sees which stories. Some linked the fake news phenomenon to the idea that personalized search results and news feeds create a filter bubble, a dynamic in which readers only encounter stories that they are likely to click on, comment on, or like. As a consequence, readers might only encounter stories that confirm pre-existing beliefs.

Facebook, in particular, has been strongly criticized for their trending news widget, which operated (at the time) without human intervention, giving viral items a spotlight, however defamatory or false. In September, Facebook’s trending news box promoted a story titled ‘Michele Obama was born a man’. Some have wondered why Facebook, despite its massive investment in artificial intelligence (machine learning), hasn’t developed an automated solution to the problem.

Continue reading “Is Fake News a Machine Learning Problem?”

Policy Field Notes: NIPS Update

By Jack Clark and Tim Hwang. 

Conversations about the social impact of AI often are very abstract, focusing on broad generalizations about technology rather than talking about the specific state of the research field. That makes it challenging to have a full conversation about what good public policy regarding AI would be like. In the interest of helping to bridge that gap, Jack Clark and I have been playing around with doing recaps that’ll take a selection of papers from a recent conference and talk about the longer term policy implications of the work. This one covers papers that appeared at NIPS 2016.

If it’s helpful to the community, we’ll plan to roll out similar recaps throughout 2017 — with the next one being ICLR in April.

Continue reading “Policy Field Notes: NIPS Update”

AI Safety Highlights from NIPS 2016

[This article is cross-posted from my blog. Thanks to Jan Leike, Zachary Lipton, and Janos Kramar for providing feedback on this post.]

This year’s Neural Information Processing Systems conference was larger than ever, with almost 6000 people attending, hosted in a huge convention center in Barcelona, Spain. The conference started off with two exciting announcements on open-sourcing collections of environments for training and testing general AI capabilities – the DeepMind Lab and the OpenAI Universe. Among other things, this is promising for testing safety properties of ML algorithms. OpenAI has already used their Universe environment to give an entertaining and instructive demonstration of reward hacking that illustrates the challenge of designing robust reward functions.

I was happy to see a lot of AI-safety-related content at NIPS this year. The ML and the Law symposium and Interpretable ML for Complex Systems workshop focused on near-term AI safety issues, while the Reliable ML in the Wild workshop also covered long-term problems. Here are some papers relevant to long-term AI safety:

Continue reading “AI Safety Highlights from NIPS 2016”

Machine Learning Meets Policy: Reflections on HUML 2016

Last Friday, the University of Ca’ Foscari in Venice organized an IEEE workshop on the Human Use of Machine Learning (HUML 2016). The workshop, held at the European Centre for Living Technology, hosted roughly 30 participants and broadly addressed the social impacts and ethical problems stemming from the wide-spread use of machine learning.

HUML joins a growing number workshops for critical voices in the ML community. These include Fairness, Accountability and Transparency in Machine Learning (FAT-ML), the #Data4Good at ICML 2016, and Human Interpretability of Machine Learning (WHI), held this year at ICML and Interpretable ML for Complex Systems, held this year at NIPS. Among this company, HUML was notable especially notable for diversity of perspectives. While FAT-ML, DS4Good and WHI featured presentations primarily by members of the machine learning community, HUML brought together scholars from philosophy of science, law, predictive policing, and  machine learning.

Continue reading “Machine Learning Meets Policy: Reflections on HUML 2016”

Clopen AI: Openness in different aspects of AI development

[This article is cross-posted from my blog. Thanks to Jelena Luketina and Janos Kramar for their detailed feedback on this post.]

1-clopen-set

There has been a lot of discussion about the appropriate level of openness in AI research in the past year – the OpenAI announcement, the blog post Should AI Be Open?, a response to the latter, and Nick Bostrom’s thorough paper Strategic Implications of Openness in AI development.

There is disagreement on this question within the AI safety community as well as outside it. Many people are justifiably afraid of concentrating power to create AGI and determine its values in the hands of one company or organization. Many others are concerned about the information hazards of open-sourcing AGI and the resulting potential for misuse. In this post, I argue that some sort of compromise between openness and secrecy will be necessary, as both extremes of complete secrecy and complete openness seem really bad. The good news is that there isn’t a single axis of openness vs secrecy – we can make separate judgment calls for different aspects of AGI development, and develop a set of guidelines.

Continue reading “Clopen AI: Openness in different aspects of AI development”

The Foundations of Algorithmic Bias

This morning, millions of people woke up and impulsively checked Facebook. They were greeted immediately by content curated by Facebook’s newsfeed algorithms. To some degree, this news might have influenced their perceptions of the day’s news, the economy’s outlook, and the state of the election. Every year, millions of people apply for jobs. Increasingly, their success might lie in part in the hands of computer programs tasked with matching applications to job openings. And every year, roughly 12 million people are arrested. Throughout the criminal justice system, computer-generated risk-assessments are used to determine which arrestees should be set free. In all these situations, algorithms are tasked with making decisions. 

Algorithmic decision-making mediates more and more of our interactions, influencing our social experiences, the news we see, our finances, and our career opportunities. We task computer programs with approving lines of credit, curating news, and filtering job applicants. Courts even deploy computerized algorithms to predict “risk of recidivism”, the probability that an individual relapses into criminal behavior. It seems likely that this trend will only accelerate as breakthroughs in artificial intelligence rapidly broaden the capabilities of software. 

futurama-judge

Turning decision-making over to algorithms naturally raises worries about our ability to assess and enforce the neutrality of these new decision makers. How can we be sure that the algorithmically curated news doesn’t have a political party bias or job listings don’t reflect a gender or racial bias? What other biases might our automated processes be exhibiting that that we wouldn’t even know to look for?

Continue reading “The Foundations of Algorithmic Bias”