Portfolio Approach to AI Safety Research

[This article originally appeared on the Deep Safety blog.]

dimensionsLong-term AI safety is an inherently speculative research area, aiming to ensure safety of advanced future systems despite uncertainty about their design or algorithms or objectives. It thus seems particularly important to have different research teams tackle the problems from different perspectives and under different assumptions. While some fraction of the research might not end up being useful, a portfolio approach makes it more likely that at least some of us will be right.

In this post, I look at some dimensions along which assumptions differ, and identify some underexplored reasonable assumptions that might be relevant for prioritizing safety research. In the interest of making this breakdown as comprehensive and useful as possible, please let me know if I got something wrong or missed anything important.

Continue reading “Portfolio Approach to AI Safety Research”

Machine Learning Security at ICLR 2017

(This article originally appeared here. Thanks to Janos Kramar for his feedback on this post.)

The overall theme of the ICLR conference setting this year could be summarized as “finger food and ships”. More importantly, there were a lot of interesting papers, especially on machine learning security, which will be the focus on this post. (Here is a great overview of the topic.)

food-and-ships

On the attack side, adversarial perturbations now work in physical form (if you print out the image and then take a picture) and they can also interfere with image segmentation. This has some disturbing implications for fooling vision systems in self-driving cars, such as impeding them from recognizing pedestrians. Adversarial examples are also effective at sabotaging neural network policies in reinforcement learning at test time.

Continue reading “Machine Learning Security at ICLR 2017”

AI Safety Highlights from NIPS 2016

[This article is cross-posted from my blog. Thanks to Jan Leike, Zachary Lipton, and Janos Kramar for providing feedback on this post.]

This year’s Neural Information Processing Systems conference was larger than ever, with almost 6000 people attending, hosted in a huge convention center in Barcelona, Spain. The conference started off with two exciting announcements on open-sourcing collections of environments for training and testing general AI capabilities – the DeepMind Lab and the OpenAI Universe. Among other things, this is promising for testing safety properties of ML algorithms. OpenAI has already used their Universe environment to give an entertaining and instructive demonstration of reward hacking that illustrates the challenge of designing robust reward functions.

I was happy to see a lot of AI-safety-related content at NIPS this year. The ML and the Law symposium and Interpretable ML for Complex Systems workshop focused on near-term AI safety issues, while the Reliable ML in the Wild workshop also covered long-term problems. Here are some papers relevant to long-term AI safety:

Continue reading “AI Safety Highlights from NIPS 2016”

Clopen AI: Openness in different aspects of AI development

[This article is cross-posted from my blog. Thanks to Jelena Luketina and Janos Kramar for their detailed feedback on this post.]

1-clopen-set

There has been a lot of discussion about the appropriate level of openness in AI research in the past year – the OpenAI announcement, the blog post Should AI Be Open?, a response to the latter, and Nick Bostrom’s thorough paper Strategic Implications of Openness in AI development.

There is disagreement on this question within the AI safety community as well as outside it. Many people are justifiably afraid of concentrating power to create AGI and determine its values in the hands of one company or organization. Many others are concerned about the information hazards of open-sourcing AGI and the resulting potential for misuse. In this post, I argue that some sort of compromise between openness and secrecy will be necessary, as both extremes of complete secrecy and complete openness seem really bad. The good news is that there isn’t a single axis of openness vs secrecy – we can make separate judgment calls for different aspects of AGI development, and develop a set of guidelines.

Continue reading “Clopen AI: Openness in different aspects of AI development”