The AI Misinformation Epidemic

Interest in machine learning may be at an all-time high. Per Google Trends, people are searching for machine learning nearly five times as often as five years ago. And at the University of California San Diego (UCSD), where I’m presently a PhD candidate, we had over 300 students enrolled in both our graduate-level recommender systems and neural networks courses.

Much of this attention is warranted. Breakthroughs in computer vision, speech recognition, and, more generally, pattern recognition in large data sets, have given machine learning substantial power to impact industry, society, and other academic disciplines.

Continue reading “The AI Misinformation Epidemic”

Fake News Challenge – Revised and Revisited

The organizers of the The Fake News Challenge have subjected it to a significant overhaul. In this light, many of my criticisms of the challenge no longer apply.

Some context:

Last month, I posted a critical piece addressing the fake news challenge. Organized by Dean Pomerleau and Delip Rao, the challenge aspires to leverage advances in machine learning to combat the epidemic viral spread of misinformation that plagues social media. The original version of the the challenge asked teams to take a claim, such as “Hillary Clinton eats babies”, and output a prediction of its veracity together with supporting documentation (links culled from the internet). Presumably, their hope was that an on-the-fly artificially-intelligent fact checker could be integrated into social media services to stop people from unwittingly sharing fake news.

My response criticized the challenge as both ill-specified (fake-ness not defined), circular (how do we know the supporting documents are legit?) and infeasible (are teams supposed to comb the entire web?)

Continue reading “Fake News Challenge – Revised and Revisited”

The Deception of Supervised Learning – V2

[This article is a revised version reposted with permission from KDnuggets]

Imagine you’re a doctor tasked with choosing a cancer therapy. Or a Netflix exec tasked with recommending movies. You have a choice. You could think hard about the problem and come up with some rules. But these rules would be overly simplistic, not personalized to the patient or customer. Alternatively, you could let the data decide what to do!

The ability to programmatically make intelligent decisions by learning complex decision rules from big data is a driving selling point of machine learning. Leaps forward in the predictive accuracy of supervised learning techniques, especially deep learning, now yield classifiers that outperform human predictive accuracy on many tasks. We can guess how an individual will rate a movie, classify images, or recognize speech with jaw-dropping accuracy. So why not make our services smart by letting the data tell us what to do?

Continue reading “The Deception of Supervised Learning – V2”

Is Fake News a Machine Learning Problem?

On Friday, Donald J. Trump was sworn in as the 45th president of the United States. The inauguration followed a bruising primary and general election, in which social media played an unprecedented role. In particular, the proliferation of fake news emerged as a dominant storyline. Throughout the campaign, explicitly false stories circulated through the internet’s echo chambers. Some fake stories originated as rumors, others were created for profit and monetized with click-based advertisements, and according to US Director of National Intelligence James Clapper, many fake news were orchestrated by the Russian government with the intention of influencing the results.  While it is not possible to observe the counterfactual, many believe that the election’s outcome hinged on the influence of these stories.

For context, consider one illustrative case as described by the New York Times. On November 9th, 35-year old marketer Erik Tucker tweeted a picture of several buses, claiming that they were transporting paid protesters to demonstrate against Trump. The post quickly went viral, receiving over 16,000 shares on Twitter and 350,000 shares on Facebook. Trump and his surrogates joined in, promoting the story through social media. Tucker’s claim turned out to be a fabrication. Nevertheless, it likely reached millions of people, more than many conventional news stories.

A number of critics cast blame on technology companies like Facebook, Twitter, and Google, suggesting that they have a responsibility to address the fake news epidemic because their algorithms influence who sees which stories. Some linked the fake news phenomenon to the idea that personalized search results and news feeds create a filter bubble, a dynamic in which readers only encounter stories that they are likely to click on, comment on, or like. As a consequence, readers might only encounter stories that confirm pre-existing beliefs.

Facebook, in particular, has been strongly criticized for their trending news widget, which operated (at the time) without human intervention, giving viral items a spotlight, however defamatory or false. In September, Facebook’s trending news box promoted a story titled ‘Michele Obama was born a man’. Some have wondered why Facebook, despite its massive investment in artificial intelligence (machine learning), hasn’t developed an automated solution to the problem.

Continue reading “Is Fake News a Machine Learning Problem?”

Policy Field Notes: NIPS Update

By Jack Clark and Tim Hwang. 

Conversations about the social impact of AI often are very abstract, focusing on broad generalizations about technology rather than talking about the specific state of the research field. That makes it challenging to have a full conversation about what good public policy regarding AI would be like. In the interest of helping to bridge that gap, Jack Clark and I have been playing around with doing recaps that’ll take a selection of papers from a recent conference and talk about the longer term policy implications of the work. This one covers papers that appeared at NIPS 2016.

If it’s helpful to the community, we’ll plan to roll out similar recaps throughout 2017 — with the next one being ICLR in April.

Continue reading “Policy Field Notes: NIPS Update”

AI Safety Highlights from NIPS 2016

[This article is cross-posted from my blog. Thanks to Jan Leike, Zachary Lipton, and Janos Kramar for providing feedback on this post.]

This year’s Neural Information Processing Systems conference was larger than ever, with almost 6000 people attending, hosted in a huge convention center in Barcelona, Spain. The conference started off with two exciting announcements on open-sourcing collections of environments for training and testing general AI capabilities – the DeepMind Lab and the OpenAI Universe. Among other things, this is promising for testing safety properties of ML algorithms. OpenAI has already used their Universe environment to give an entertaining and instructive demonstration of reward hacking that illustrates the challenge of designing robust reward functions.

I was happy to see a lot of AI-safety-related content at NIPS this year. The ML and the Law symposium and Interpretable ML for Complex Systems workshop focused on near-term AI safety issues, while the Reliable ML in the Wild workshop also covered long-term problems. Here are some papers relevant to long-term AI safety:

Continue reading “AI Safety Highlights from NIPS 2016”

Machine Learning Meets Policy: Reflections on HUML 2016

Last Friday, the University of Ca’ Foscari in Venice organized an IEEE workshop on the Human Use of Machine Learning (HUML 2016). The workshop, held at the European Centre for Living Technology, hosted roughly 30 participants and broadly addressed the social impacts and ethical problems stemming from the wide-spread use of machine learning.

HUML joins a growing number workshops for critical voices in the ML community. These include Fairness, Accountability and Transparency in Machine Learning (FAT-ML), the #Data4Good at ICML 2016, and Human Interpretability of Machine Learning (WHI), held this year at ICML and Interpretable ML for Complex Systems, held this year at NIPS. Among this company, HUML was notable especially notable for diversity of perspectives. While FAT-ML, DS4Good and WHI featured presentations primarily by members of the machine learning community, HUML brought together scholars from philosophy of science, law, predictive policing, and  machine learning.

Continue reading “Machine Learning Meets Policy: Reflections on HUML 2016”

Clopen AI: Openness in different aspects of AI development

[This article is cross-posted from my blog. Thanks to Jelena Luketina and Janos Kramar for their detailed feedback on this post.]

1-clopen-set

There has been a lot of discussion about the appropriate level of openness in AI research in the past year – the OpenAI announcement, the blog post Should AI Be Open?, a response to the latter, and Nick Bostrom’s thorough paper Strategic Implications of Openness in AI development.

There is disagreement on this question within the AI safety community as well as outside it. Many people are justifiably afraid of concentrating power to create AGI and determine its values in the hands of one company or organization. Many others are concerned about the information hazards of open-sourcing AGI and the resulting potential for misuse. In this post, I argue that some sort of compromise between openness and secrecy will be necessary, as both extremes of complete secrecy and complete openness seem really bad. The good news is that there isn’t a single axis of openness vs secrecy – we can make separate judgment calls for different aspects of AGI development, and develop a set of guidelines.

Continue reading “Clopen AI: Openness in different aspects of AI development”

Are Deep Neural Networks Creative? v2

[This article is a revised version reposted with permission from KDnuggets]

Are deep neural networks creative? Given recent press coverage of art-generating deep learning, it might seem like a reasonable question. In February, Wired wrote of a gallery exhibition featuring works generated by neural networks. The works were created using Google’s inceptionism, technique that transforms images by iteratively modifying them to enhance the activation of specific neurons in a deep net. Many of the images appear trippy, with rocks transforming into buildings or leaves into insects. Several other researchers have proposed techniques for generating images from neural networks for their aesthetic or stylistic qualities. One method, introduced by Leon Gatys of the University of Tubingen in Germany, can extract the style from one image (say a painting by Van Gogh), and apply it to the content of another image (say a photograph).

In the academic sphere, work on generative image modeling has emerged as a hot research topic. Generative adversarial networks (GANs), introduced by Ian Goodfellow, synthesize novel images by modeling the distribution of seen images. Already some researchers have looked into ways of using GANS to perturb natural images, as by adding smiles to photos.

computer-deep-learning-algorithm-painting-masters-fb__700

In parallel, researchers have also made rapid progress on generative language modeling. Character-level recurrent neural network (RNN) language models now permeate the internet, appearing to hallucinate passages of Shakespeare, Linux source code, and even Donald Trump’s Twitter eruptions. Not surprisingly, a wave of papers and demos soon followed, using LSTMs for generating rap lyrics and poetry.

Clearly, these advances emanate from interesting research and deserve the fascination they inspire.

In this post, rather than address the quality of the work (which is admirable), or explain the methods (which has been done ad nauseam), we’ll instead address the question, can these nets reasonably be called creative? Already, some make the claim. The landing page for deepart.io, a site which commercializes the “Deep Style” work, proclaims “TURN YOUR PHOTOS INTO ART”. If we accept creativity as a prerequisite for art, the claim is made here implicitly.

Continue reading “Are Deep Neural Networks Creative? v2”

The Failure of Simple Narratives

Approximately Correct is not a political blog in any traditional sense. The mission is not to prognosticate elections, like FiveThirtyEight, nor to revel in the political circus, like Politico. And the common variety political writing seems antithetical to our goals. Today, political arguments tend to follow an anti-scientific pattern of choosing a perspective first and then selectively reaching for supporting evidence. It’s everything we should hope to avoid.

But, per our mission statement, this blog aims to address the intersection of scientific and technical developments with social issues. And social issues -the economy, the environment, healthcare, news curation, et al. – are necessarily political. Moreover, scientific practice requires dispassionate discourse and the ability to change one’s beliefs given new information. In this light, the abstention of scientists from political discourse seems irresponsible.

[An aside: Not all political issues are scientific or technical. The relative value of free speech vs the danger of hate speech may be an intrinsically subjective judgment. But many issues, such as global warming, explicitly exhibit scientific dimensions.]

Technical developments can necessitate policy shifts. Absent the capacity to warm the planet or the ability to detect such warming, one couldn’t justify strong reforms to energy policy. Additionally, absent scientific understanding of the likely effects of policy, one cannot argue effectively for or against them. So sober scientific analysis has a role to play not just in evaluating policies, but also in evaluating individual arguments.

Machine learning and data science interact with politics in a third important way. The political landscapes of entire nations are immense. Take last night’s presidential election for example. Roughly 120 million people voted in 3,007 counties, 435 congressional districts and 50 states. Hardly any citizens have visited every state. Not even the candidates could possibly visit every county. Thus, our sense of the nation’s pulse, and our narratives regarding the driving forces in the election are ultimately shaped by a mixture of second-hand accounts and data science (as by extensive polling).

Simplistic Narratives

Simplistic narratives and data science play off of each other. Narratives influence the questions that pollsters ask. And each poll result invites simplistic analysis. In the remainder of this post, without expressing my personal opinions, I’d like to give a dispassionate analysis of several popular stories that have risen to prominence during this election, sampled from across both the Democratic-Republican and establishment/anti-establishment divide. I choose these narratives neither because they are completely true nor completely false. Each presents a seemingly simple thesis that  belies more complex realities. To be as even-handed as possible, I’ve chosen one each from the Clinton-learning and Trump-leaning narratives. Continue reading “The Failure of Simple Narratives”