NYU Law’s Algorithms and Explanations

Last week, on April 27th and 28th, I attended Algorithms and Explanations, an interdisciplinary conference hosted by NYU Law School’s Information Law Institute. The thrust of the conference could be summarized as follows:

  1. Humans make decisions that affect the lives of other humans
  2. In a number of regulatory contexts, humans must explain decisions, e.g.
    • Bail, parole, and sentencing decisions
    • Approving a line of credit
  3. Increasingly, algorithms “make” decisions traditionally made by man, e.g.
    • Risk models already used to make decisions regarding incarceration
    • Algorithmically-determined default risks already used to make loans
  4. This poses serious questions for regulators in various domains:
    • Can these algorithms offer explanations?
    • What sorts of explanations can they offer?
    • Do these explanations satisfy the requirements of the law?
    • Can humans actually explain their decisions in the first place?

The conference was organized into 9 panels. Each featured between 3 and 5 20-minute talks followed by a moderated discussion and Q&A. The first panel, moderated by Helen Nissenbaum (NYU & Cornell Tech), featured legal scholars (including conference organizer Katherine Strandburg) and addressed the legal arguments for explanations in the first place. A second panel featured sociologists Duncan Watts (MSR) and Jenna Burrell (Berkeley) as well as Solon Borocas (MSR), an organizer of the Fairness, Accountability and Transparency in Machine Learning workshop.

Katherine Jo Strandburg, NYU Law professor and conference organizer

Continue reading “NYU Law’s Algorithms and Explanations”

Policy Field Notes: NIPS Update

By Jack Clark and Tim Hwang. 

Conversations about the social impact of AI often are very abstract, focusing on broad generalizations about technology rather than talking about the specific state of the research field. That makes it challenging to have a full conversation about what good public policy regarding AI would be like. In the interest of helping to bridge that gap, Jack Clark and I have been playing around with doing recaps that’ll take a selection of papers from a recent conference and talk about the longer term policy implications of the work. This one covers papers that appeared at NIPS 2016.

If it’s helpful to the community, we’ll plan to roll out similar recaps throughout 2017 — with the next one being ICLR in April.

Continue reading “Policy Field Notes: NIPS Update”

Machine Learning Meets Policy: Reflections on HUML 2016

Last Friday, the University of Ca’ Foscari in Venice organized an IEEE workshop on the Human Use of Machine Learning (HUML 2016). The workshop, held at the European Centre for Living Technology, hosted roughly 30 participants and broadly addressed the social impacts and ethical problems stemming from the wide-spread use of machine learning.

HUML joins a growing number workshops for critical voices in the ML community. These include Fairness, Accountability and Transparency in Machine Learning (FAT-ML), the #Data4Good at ICML 2016, and Human Interpretability of Machine Learning (WHI), held this year at ICML and Interpretable ML for Complex Systems, held this year at NIPS. Among this company, HUML was notable especially notable for diversity of perspectives. While FAT-ML, DS4Good and WHI featured presentations primarily by members of the machine learning community, HUML brought together scholars from philosophy of science, law, predictive policing, and  machine learning.

Continue reading “Machine Learning Meets Policy: Reflections on HUML 2016”