Machine Learning Security at ICLR 2017

(This article originally appeared here. Thanks to Janos Kramar for his feedback on this post.)

The overall theme of the ICLR conference setting this year could be summarized as “finger food and ships”. More importantly, there were a lot of interesting papers, especially on machine learning security, which will be the focus on this post. (Here is a great overview of the topic.)

food-and-ships

On the attack side, adversarial perturbations now work in physical form (if you print out the image and then take a picture) and they can also interfere with image segmentation. This has some disturbing implications for fooling vision systems in self-driving cars, such as impeding them from recognizing pedestrians. Adversarial examples are also effective at sabotaging neural network policies in reinforcement learning at test time.

adv-ex-policy.png

In more encouraging news, adversarial examples are not entirely transferable between different models. For targeted examples, which aim to be misclassified as a specific class, the target class is not preserved when transferring to a different model. For example, if an image of a school bus is classified as a crocodile by the original model, it has at most 4% probability of being seen as a crocodile by another model. The paper introduces an ensemble method for developing adversarial examples whose targets do transfer, but this seems to only work well if the ensemble includes a model with a similar architecture to the new model.

On the defense side, there were some new methods for detecting adversarial examples. One method augments neural nets with a detector subnetwork, which works quite well and generalizes to new adversaries (if they are similar to or weaker than the adversary used for training). Another approach analyzes adversarial images using PCA, and finds that they are similar to normal images in the first few thousand principal components, but have a lot more variance in later components. Note that the reverse is not the case – adding arbitrary variation in trailing components does not necessarily encourage misclassification.

There has also been progress in scaling adversarial training to larger models and data sets, which also found that higher-capacity models are more resistant against adversarial examples than lower-capacity models. My overall impression is that adversarial attacks are still ahead of adversarial defense, but the defense side is starting to catch up.

20170426_202937.jpg

AI Safety Highlights from NIPS 2016

[This article is cross-posted from my blog. Thanks to Jan Leike, Zachary Lipton, and Janos Kramar for providing feedback on this post.]

This year’s Neural Information Processing Systems conference was larger than ever, with almost 6000 people attending, hosted in a huge convention center in Barcelona, Spain. The conference started off with two exciting announcements on open-sourcing collections of environments for training and testing general AI capabilities – the DeepMind Lab and the OpenAI Universe. Among other things, this is promising for testing safety properties of ML algorithms. OpenAI has already used their Universe environment to give an entertaining and instructive demonstration of reward hacking that illustrates the challenge of designing robust reward functions.

I was happy to see a lot of AI-safety-related content at NIPS this year. The ML and the Law symposium and Interpretable ML for Complex Systems workshop focused on near-term AI safety issues, while the Reliable ML in the Wild workshop also covered long-term problems. Here are some papers relevant to long-term AI safety:

Continue reading “AI Safety Highlights from NIPS 2016”

Machine Learning Meets Policy: Reflections on HUML 2016

Last Friday, the University of Ca’ Foscari in Venice organized an IEEE workshop on the Human Use of Machine Learning (HUML 2016). The workshop, held at the European Centre for Living Technology, hosted roughly 30 participants and broadly addressed the social impacts and ethical problems stemming from the wide-spread use of machine learning.

HUML joins a growing number workshops for critical voices in the ML community. These include Fairness, Accountability and Transparency in Machine Learning (FAT-ML), the #Data4Good at ICML 2016, and Human Interpretability of Machine Learning (WHI), held this year at ICML and Interpretable ML for Complex Systems, held this year at NIPS. Among this company, HUML was notable especially notable for diversity of perspectives. While FAT-ML, DS4Good and WHI featured presentations primarily by members of the machine learning community, HUML brought together scholars from philosophy of science, law, predictive policing, and  machine learning.

Continue reading “Machine Learning Meets Policy: Reflections on HUML 2016”

Clopen AI: Openness in different aspects of AI development

[This article is cross-posted from my blog. Thanks to Jelena Luketina and Janos Kramar for their detailed feedback on this post.]

1-clopen-set

There has been a lot of discussion about the appropriate level of openness in AI research in the past year – the OpenAI announcement, the blog post Should AI Be Open?, a response to the latter, and Nick Bostrom’s thorough paper Strategic Implications of Openness in AI development.

There is disagreement on this question within the AI safety community as well as outside it. Many people are justifiably afraid of concentrating power to create AGI and determine its values in the hands of one company or organization. Many others are concerned about the information hazards of open-sourcing AGI and the resulting potential for misuse. In this post, I argue that some sort of compromise between openness and secrecy will be necessary, as both extremes of complete secrecy and complete openness seem really bad. The good news is that there isn’t a single axis of openness vs secrecy – we can make separate judgment calls for different aspects of AGI development, and develop a set of guidelines.

Continue reading “Clopen AI: Openness in different aspects of AI development”

The Foundations of Algorithmic Bias

This morning, millions of people woke up and impulsively checked Facebook. They were greeted immediately by content curated by Facebook’s newsfeed algorithms. To some degree, this news might have influenced their perceptions of the day’s news, the economy’s outlook, and the state of the election. Every year, millions of people apply for jobs. Increasingly, their success might lie in part in the hands of computer programs tasked with matching applications to job openings. And every year, roughly 12 million people are arrested. Throughout the criminal justice system, computer-generated risk-assessments are used to determine which arrestees should be set free. In all these situations, algorithms are tasked with making decisions. 

Algorithmic decision-making mediates more and more of our interactions, influencing our social experiences, the news we see, our finances, and our career opportunities. We task computer programs with approving lines of credit, curating news, and filtering job applicants. Courts even deploy computerized algorithms to predict “risk of recidivism”, the probability that an individual relapses into criminal behavior. It seems likely that this trend will only accelerate as breakthroughs in artificial intelligence rapidly broaden the capabilities of software. 

futurama-judge

Turning decision-making over to algorithms naturally raises worries about our ability to assess and enforce the neutrality of these new decision makers. How can we be sure that the algorithmically curated news doesn’t have a political party bias or job listings don’t reflect a gender or racial bias? What other biases might our automated processes be exhibiting that that we wouldn’t even know to look for?

Continue reading “The Foundations of Algorithmic Bias”